A comparison of hemodynamic and neural responses in cat visual cortex using complex stimuli.

نویسندگان

  • Christoph Kayser
  • Mina Kim
  • Kamil Ugurbil
  • Dae-Shik Kim
  • Peter König
چکیده

We compare fMRI-BOLD responses in anesthetized cats with local field potentials (LFPs), aggregate high-frequency responses (analog-Mua) and spiking activity recorded in primary and higher visual cortex of alert animals. The similarity of the activations in these electrophysiological signals to those in the BOLD is quantified by counting recording sites where different stimuli elicit the same relative activation as in the imaging experiments. Using artificial stimuli, a comparison of BOLD and LFP strongly depends on the frequency range used. Stimulating with complex or natural stimuli reduces this frequency dependence and yields a good match of LFP and BOLD. In general, this match is best between 20 and 50 Hz. The measures of high-frequency activity behave qualitatively different: the responses of the analog-Mua match those of the LFP; the spiking activity shows a low concordance with the BOLD signal. This dissociation of BOLD and spiking activity is most prominent upon stimulation with natural stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Receptive Field Encoding Model for Dynamic Natural Vision

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

متن کامل

Neural and vascular responses to fused binocular stimuli: a VEP and fNIRS study.

PURPOSE The aim of our study was to investigate the correlation between neural and hemodynamic responses to stereoscopic stimuli recorded over visual cortex. METHODS Test stimuli consisted of a static checkerboard (checks) and dichoptic static random dot (RD) presentations with no binocular disparity (ZD) or with horizontal disparity (HD). Hemodynamic responses were recorded from right and le...

متن کامل

Comparison of hemodynamic response nonlinearity across primary cortical areas.

Hemodynamic responses to auditory and visual stimuli and motor tasks were assessed for the nonlinearity of response in each of the respective primary cortices. Five stimulus or task durations were used (1, 2, 4, 8, and 16 s), and five male subjects (aged 19 +/- 1.9 years) were imaged. Two tests of linearity were conducted. The first test consisted of using BOLD responses to short stimuli to pre...

متن کامل

Short-latency category specific neural responses to human faces in macaque inferotemporal cortex

In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...

متن کامل

Computational subunits of visual cortical neurons revealed by artificial neural networks.

A crucial step toward understanding visual processing is to obtain a comprehensive description of the relationship between visual stimuli and neuronal responses. Many neurons in the visual cortex exhibit nonlinear responses, making it difficult to characterize their stimulus-response relationships. Here, we recorded the responses of primary visual cortical neurons of the cat to spatiotemporal r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 14 8  شماره 

صفحات  -

تاریخ انتشار 2004